

The industry's most advanced residential fresh air system, created to offer a universal platform specifically designed and improved to make contractors life easier and more profitable while delivering constant superior air quality.

- Thanks to the VIRTUO[™] technology, the airflow calibration and auto-balancing are achieved quickly and maintained throughout the life of the product
- Select the desired CFM using the proven integrated LCD screen
- Integrated electronic airflow measurement device with real time LCD
- Integrated diagnostic tool
- Equipped with PMSM ECM motors for energy efficient operation
- Suspended installation (chains included)
 OR
- Wall-mount installation (universal brackets included)
 - installation with 2 brackets
 - installation with 4 brackets

Fresh Air Systems - 210 CFM

ERV

Top ports: B210E75RT

65 to 206 CFM @ 0.4 in. w.g. 65 to 199 CFM @ 0.6 in. w.g.

Parts/Motor/ERV Core

Visit Broan-NuTone.com for complete warranty text.

Unit Description

- SRE of 78% at 32°F (81 CFM) and 65% at -13°F (83 CFM) and SRE of 81% at 32°F (64 CFM)
- Ports size: 6"
- Recirculation defrost
- Corrosion resistant galvanized steel door and cabinet
- One-piece molded insulation shell, no air leakage (expanded polystyrene; UL 94 HF-1 certified)
- VIRTUO[™] constant airflow and auto-balancing device (patent pending)
- Motorized dampers (no additional backdraft dampers required)
- Recirculate air within the dwelling with recirculation mode using a main wall control
- 6' power cord
- Unit electrical characteristics: 120 volts, 60 Hz, 3.6 A, 270 W
- For residential indoor installation only

Controls

AUTOMATIC

SPEED SELECTOR

ADVANCED

ROOST

There are 4 optional main controls and 2 optional auxiliary controls available. Refer to Wall Control specification sheet for more information.

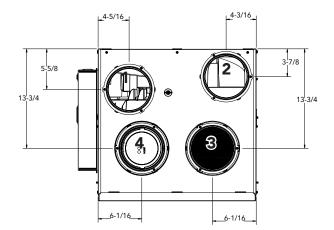
Core

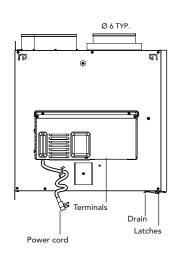
 Polypropylene crossflow core with polymeric membrane and aluminum covers, impact resistant, non washable

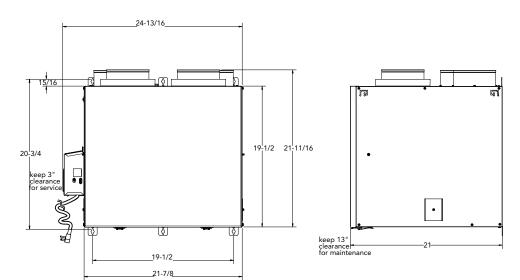
Filters

- MERV 8 grade washable standard filter (included)
- Optional MERV 13 grade filter part no. V243001

Options

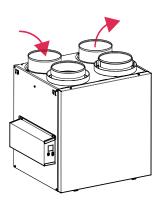

• Indoor and outdoor terminations


¹Airflow performances associated with MERV 13 optional filter are not HVI certified. However, from tests performed by the manufacturer, such performances are not affected by the use of this filter.


6" Ports Dimensions

- 1 Exhaust air from building
- 2 Fresh air to building
- 3 Exhaust air to outside
- 4 Fresh air from outside

Total assembled weight: approx 47 lbs (21.4 kg) (core included) Shipping weight: approx 55 lbs (25 kg)

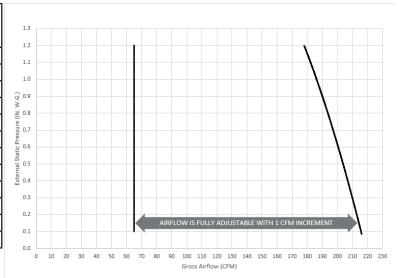


Dimensions shown in inches

Defrost System

Homeshield™ Defrosting System

Defrost is activated at a temperature of 23°F and lower. No negative pressure is created by air exhausted to the outdoors since the air is recirculated into the house, helping to prevent any backdraft.



Fan Curves with VIRTUO™

Thanks to VIRTUO™ technology, there is no need to balance the unit manually. Both PMSM ECM motors are controlled by artificial intelligence performing 120 readings per minute then processing this information to maintain the requested airflow.

For typical installation, VIRTUO™ will ensure balanced ventilation at every selected speed regardless of the weather conditions, the type of connection, the variable speed furnace/AHU, the stack effect, the filter clogging and so on. This results in peace of mind for installers and users knowing that the unit will always remain balanced and that it will maintain its maximum heat/energy recovery efficiency.

STATIC PRESSURE (PA)	STATIC PRESSURE (IN. W.G.)	NET SUPPLY AIRFLOW (L/s)	NET SUPPLY AIRFLOW (CFM)	Gross Airflow Supply (L/s)	GROSS AIRFLOW SUPPLY (CFM)	Gross Airflow Exhaust (L/s)	GROSS AIRFLOW EXHAUST (CFM)
25	0.1	101	214	102	216	102	216
50	0.2	99	210	100	212	100	212
75	0.3	98	208	99	210	99	210
100	0.4	97	206	98	208	98	208
125	0.5	95	201	96	203	96	203
150	0.6	94	199	95	201	95	201
175	0.7	92	195	93	197	93	197
200	0.8	90	191	91	193	91	193
225	0.9	89	189	90	191	90	191
250	1.0	87	184	88	186	88	186
275	1.1	85	180	86	182	86	182
300	1.2	83	176	84	178	84	178

Energy Performance

SUPPLY	Y ERATURE	Net A	IRFLOW	Power Consumed Watts	Sensible Recovery Efficiency	Adjusted Sensible Recovery Efficiency	APPARENT SENSIBLE EFFECTIVENESS*	Total Recovery Efficiency	Adjusted Total	LATENT RECOVERY /
°C	°F	L/S	CFM						RECOVERY EFFICIENCY	Moisture Transfer
НЕАТІІ	NG									
0	32	30	64	28	81%	83%	84%	-	-	0.64
0	32	38	81	37	78%	81%	82%	-	-	0.62
0	32	76	161	147	72%	77%	78%	-	-	0.53
-25	-13	39	83	75	65%	67%	81%	-	-	0.63
Cool	ING									
35	95	31	66	31	-	-	76%	67%	69%	0.66
35	95	38	81	38	-	-	74%	64%	66%	0.63
35	95	76	161	155	-	-	60%	52%	56%	0.53

^{*}Data not certified by HVI.

Requirements and Standards

- UL 1812 compliant (safety)
- Performance tested in accordance with CSA C439 Standard
- Compliant with Prop 65

- Can be used to comply with California Title 24 2019 Part 6 Fault Indicator Display Requirements
- Can be used to earn WA energy code credits

Project:		Remarks
Location:		
Part no.:		
Qty.:		
Submitted by:	Date:	

